Part 2 - High-Performance Computing - NEMO Climate
Simulation Application

Strategy

e NEMO
NEMO which stands for Nucleus for European Modelling of the Ocean, is a
state-of-the-art modelling framework for research activities and forecasting
services in ocean and climate sciences, developed in a sustainable way by a
European consortium. (https: /www.nemo-ocean.eu/) NEMO is distributed
with several reference configurations, allowing both the user to set up a first
application and the developer to validate the Developments. (Figure 2.2)

e GYRE spec

The GYRE configuration has been built to simulate the seasonal cycle of a
double-gyre box model. The domain geometry is a closed rectangular basin
on the beta-plane centred at sin(30) and rotated by 45°, 3180 km long, 2120
km wide and 4 km deep. (Figure 2.3) The domain is bounded by vertical walls
and by a flat bottom. The configuration is meant to represent an idealized
North Atlantic or North Pacific basin. The circulation is forced by analytical
profiles of wind and buoyancy fluxes.

[T]
/ fmask set to value > 2
38°N
e
Wanas B i
36°N
Q Viscous Boundary
34N layer | e v oW AW W
| | | Relative vorticity (units of f)

10°W 8°W W 4°W 2°W o0 I —— |
0.1 LY ol 2

Figure 2.1 Figure 2.2

15

https://www.nemo-ocean.eu/

Profile analysis

We did profile analysis to understand the performance of MEMO. As the
diagram shows, the function “_traadv_fct_MOD_tra_adv_fct” is the
hotspot of the NEMO model program. It consumes 32.8% computing
resources of the total computing sum. Through the profile diagram (Figure
2.3), we learned more about the NEMO computing resource consuming
distribution. The information also helps us to determine which part of the
code could be ported to GPU for acceleration. Although we can’t use GPUs in
this competition, we did find some references and documentations, and we

would very much like to try it in the future.

Function Stack CPU Time: Total ¥ CPU Time: Self Instructions Retired: Total Instructions Retired: Self Microarchitecture Usa

Total 750.130s (D 100.0%
__traadv_fct_ MOD_tra_adv_fct 171.215s @ 171.215s @@ 32.8% 1,082,440,000,000
__traldf_iso_MOD_tra_ldf_iso 117.405s @ 117.405s @ 15.1% 500,310,000,000
__leee754_exp_avx 61.495s § 61.495s § 11.4% 376,180,000,000
clear_page_c_e 52.665s | 52.665s 0.0% 1,250,000,000
__Idfslp_MOD_ldf_slp 26.645s | 26.645s | 4.0% 131,480,000,000
__dynspg_ts_MOD_dyn_spg_ts 21.575s | 21.575s | 2.0% 67,560,000,000
__trazdf_MOD_tra_zdf_imp 20.180s | 20.180s | 1.7% 57,490,000,000
__zdftke_MOD_zdf_tke 19.140s | 19.140s | 2.3% 77,480,000,000
__p2zbio_MOD_p2z_bio 17.975s | 17.975s | 1.8% 60,600,000,000
xios::CAttributeArray<double, (int)1>::s| 15.640s | 15.640s | 2.4% 80,720,000,000
__ieee754_log_avx 14.870s | 14.870s | 2.5% 81,260,000,000
__eosbn2_MOD_rab_3d 12.410s 12.410s 1.6% 53,750,000,000
.
Figure 2.3
Installation

We make a diagram (Figure 2.4) to show our installation process which
compares within our own local cluster and NSCC machine.
o Our own local cluster

First, we follow the HPC-AI NEMO installation guideline and use the
hpc-x mpi to build the NEMO environment on our own machine. The
installation was completed smoothly throughout the guideline
process. After installation success, we try to run the NEMO model
using infiniband to speed up our program. Besides, we also try
different mpi versions and libraries on our machine.

NSCC machine

When we started installing on the NSCC machine, we encountered
some errors which we couldn’t solve. The first one is using hpcx mpi
which leads to the compiler can't finding the ¢ compiler. We try to
install our own new cmake and solve the error. After we solved it, at

16

the stage of running NEMO would have a segmentation fault. We make
our effort to solve the error and install repeatedly many times, the
error still exists. After trying the hpcx mpi version, we installed many
versions of mpi including openmpi, mpich, Openmpi from the NSCC
module file, finally we ran successfully using mpich. Mpich is the only
one successful version of mpi compared with OpenMPI and hpcx mpi.
For the NSCC machine, we choose mpich-3.1.4 version as our mpi

VErsion.
Jﬂ‘-.-.......-:::!!
Community Ocean Model
NSCC Our
machine machine
I — I 1 l
From
From ‘ Use Use own mpich-3.1.4 hpcx mpi
hpcx mpi . MPI 4.0.5
openmpi/gcc493_gpu/1.10.4 | l

l l l “
can't find segmentation
¢ compiler fault [—Jﬁ

l hdf5-1.10.6 hdf5-1.8.21
use own

segmetation
fault

cmlake | —J

pnetcdf-1.12.0

segmetation
fault l

netcdf-c-4.7.3

!

netcdf-fortran-4.4.5

l

success

Figure 2.4

17

Optimizing

e Multiple nodes

We use our script to get each hostname of node, and try to cross nodes from
one node started. We get errors when running NEMO using 17 nodes and
each node has 24 CPUs. The execute program always failed and couldn't be
run successfully. The question confused us for a long time, we were very
confused about why the program couldn’t be run successfully when using
more than 384 CPUs. After our team discussion, our conclusion is that the
spec of the test case “nn_Gyre” has limited the number of CPUs. For the
program parameter “nn_Gyre” 25 only allows 384 CPUs to run. If we want to
run more than 16 nodes with 384 CPUs in total, we should distribute 384
processes equally to each node. Therefore, 384 CPUs distribute to 16 nodes
and each node has 12 CPUs. After our experiment (Figure 2.5), using 32 nodes
12 CPUs per node could be run successfully and was the fastest one
compared with the other versions using 384 CPUs.

Time (s) v.s. Nodes

1 node (24 CPUs per node)

4 node (24 CPUs per node)

8 node (24 CPUs per node)
16 node (24 CPUs per node)
32 nodes (12 CPUs per node)

0 2500 5000 7500 10000

Time (s)

Figure 2.5

However, we received the mail from NSCC organizer, they told us that NEMO
can’'t run with an arbitrary number of MPI ranks. After we know that, we
continuously test 32 nodes with more than 12 CPUs per node. The result
(Figure 2.6) shows that only four various numbers of CPUs per node could be
run.

18

CPUs per node | Time (second) CPUs per node | Time (second)
12 475 19 fail
14 460 20 fail
15 446 21 450
16 fail 22 fail
17 fail 23 fail
18 fail 24 fail
Figure 2.6
-O option flag

Compiling the makenemo file using arch-linux_gfortran.fcm file has many
option flags and we discovered that %CFLAGS and %FCFLAGS there are two
flags that could be fixed and may have a chance to optimize the program. The
02 O3 and Ofast compare with 16 nodes each node has 24 processes.(Figure
2.7) The testing result is that the Ofast flag is faster than the O2 flag and O3 is
the slowest of them. When we test 32 nodes (12 PCUs per node) using the
Ofast flag, the program would fail and can’'t be run. After the test, we decided
to use default flag O2 to make sure that the answer and output files will be
correct and fine.

16 Nodes (24 CPUs per node)

02

03

Ofast

0 500 1000 1500 2000

Time (s)

Figure 2.7

19

e HDF5 version

From the hpcx NEMO guideline,the hdf5 version used in the installation
tutorial is 1.10.6, but we are interested in whether different hdf5 versions
could improve the performance or not. Hence, we test two different hdf5
versions on 32 nodes and each node has 12 CPUs. After multiple tests (Figure
2.8), we choose each version which has the least running time to compare.
Finally, we decided to choose the hdf5 1.8.21 version, because the version is
stable and a little faster than hdf5-1.10.6.

32 Nodes (12 CPUs per node)

hdf5-1.8.21

Hdf5-1.10.6

0 200 400 600
Time (s)

Figure 2.8

e Process-core Binding

-bind-to <object[:num]> Specify the hardware element to bind each
process. We make an experiment : add -bind-to hwthread on different
numbers of nodes. Through the experiment, we discovered a special result as
shown below(Figure 2.9). The result shows that using 4 nodes(24 CPUs per
node) would have a significant optimizing effect. On the contrary, we used
more than 16 nodes, and we got two results from using 16 nodes(24 CPUs per
node) and 32 nodes (12 CPUs per node). Both of the results show that the
performance would be worse than no add -bind-to hwthread, so we decide
to remove this to optimize in our command.

20

B Only use Infiniband M Use Infiniband and add --bind-to hwthread
4 nodes(24 CPUs per node)
16 nodes(24 CPUs per node)

32 nodes(12 CPUs per node)
0 2000 4000
Time (s)

Figure 2.9
Execution

After the above testing, we finally choose the best performance version to hand out.
We select the top two versions among all versions tested, and we test many times
and compare their average running time to choose one of them as our best version.
The best one is using 32 nodes(15 per CPUs).

Install NEMO from GitHub or Compressed File (Choose one), and submit with
the pbs file.

e Optionl : Install From GitHub

wget
https://raw.githubusercontent.com/William-Mou/module file/main/instal

1 nemo.sh
chmod +x install nemo.sh && ./install nemo.sh

e Option2 : Install From Compressed File

tar zxvf install nemo.tar.gz && \
cd install nemo && \

chmod +x install nemo_local.sh && \
./install nemo_local.sh

e Evaluation GLUE benchmark

gsub $APPROOT/module file/NTHU_NEMO.pbs

21

Result

e Software Compilation Version

gce 75.0
boost 1.72.0
mpich 3.14
zlib 1.2.11
hdf5 1.8.21
pnetcdf 1.12.0
netcdf-c 473
netcdf-fortran 44.5
Option flag Default

e Hardware Usage

Nodes 32
CPU per node 15
Total CPUs 480
e Time
Time 00:07:26
Steps 4320

Steps/S 9.68

HPC-A I

ADVISORY COUNCIL
NETWORK OF EXPERTISE

—
GPAW Introduction

- GPAW is a versatile software package for first-principles simulations of nanostructures
utilizing density-functional theory and time-dependent density-functional theory.

GPAW - Introduction

* The benchmark of GPAW in this competition is copper filament, periodic in z-direction
Real-space basis, k-points in z- dimension.

NETWORK OF EXPERTISE 25

GPAW - Building and running"

- Multi-nodes has a good scalability on NSCC cluster.

- Using mpich to parallelize, the performance is bad.

50000

40000

30000

seconds

20000

10000

NETWORK OF EXPERTISE

2

nodes (24 cores per node)

HPC-A I

ADVISORY COUNCIL

NETWORK OF EXPERTISE

e
NSCC using pure MPI parallelization

gce 5.1.0
mpich 3.3.0
libxc 4.3.4
Blas 3.8.0
python 3.8.3
Total Nodes cores Time
cores Per node (second)
24 1 24 41130
48 2 24 7141
96 4 24 3085

26

GPAW - Building and running

HPC-A I

ADVISORY COUNCIL
NETWORK OF EXPERTISE

— e e

Niagara using pure MPI parallelization

- Multi-nodes has a good scalability on Niagara cluster.
- Using Intelmpi to parallelize, the performance is good.

1250

1000

750

seconds

500

250

1 2

nodes (80 cores per node)

NETWORK OF EXPERTISE

icc 2019u4
Intelmpi 2019u4
libxc 4.3.4
openblas 0.3.7
python 3.8.5
Total Nodes cores Time
cores Per node (second)
80 1 80 1166
160 2 80 681
320 4 80 417
27

HPC-A I

ADVISORY COUNCIL

NETWORK OF EXPERTISE

GPAW - Building and running

NSCC vs. Niagara using pure MPI parallelization

- Multi-nodes has a good scalability on both of Niagara cluster and NSCC cluster.
- Niagara cluster has more cores than NSCC cluster, but we can discover that performance

of Intelmpi is better than mpich.

B NSCC M Niagara NSCC Niagara
50000
C compiler 5.1.0 Intel 2019u4
40000
mpi mpich -3.3 Intelmpi 2019u4
, 30000
& libxc 4.3.4 4.3.4
§ 20000
Blas 3.8.0 No use
10000
1185 - - Openblas No use 0.3.7
0 | 3085
; < . python 3.8.3 3.8.5

NSCC nodes (24 cores pre node) , Niagara node (80 cores per node)

NETWORK OF EXPERTISE 28

GPAW - Visualization a EVEE’EDEE

GPAW visualization

- Using jmol simulator to simulate the file elf_ribbon.cube file.
- One is image and the other is animation.

29

= - H A
GPAW - Optimize A.EEI.['

NETWORK OF EXPERTISE

Choose which cluster to optimize.

- When using four nodes and each node using all of cores per node to compare.
- The performance of Niagara cluster is much better than NSCC cluster.

- We choose Niagara cluster to optimize.

@ NSCC W Niagara

50000)
NSCC Niagara
40000
Nodes 4 4
” 30000
2 cores per
5 b 24 80
S 20000 nodae
10000 Total cores

1166

681 417 T
ime
| 3085 | 3085
1 2 4 (seconds)

NSCC nodes (24 cores pre node) , Niagara node (80 cores per node)

NETWORK OF EXPERTISE 30

GPAW - Optimize

HPC-A I

ADVISORY COUNCIL
NETWORK OF EXPERTISE

R

FFTW

- There is only a little speedup when using FFTW to optimize.

B Without FFTW [Using FFTW
1250

1000

750

seconds

500

250

1 2

nodes (80 cores per node)

NETWORK OF EXPERTISE

cNode Without FFTW Using FFTW
(seconds) (seconds)
! 1166 1170
(80 cores per node)
2 681 671
(80 cores per node)

4

(80 cores per node)

31

GPAW - Optimize

Hdf5

- There is only a little speedup when using Hdf5 to optimize.

B Without Hdf5 W Using Hdf5
1250

1000

750

seconds

500

250

1 2 4

nodes (80 cores per node)

NETWORK OF EXPERTISE

HPC-A I

ADVISORY COUNCIL

NETWORK OF EXPERTISE

g

Without Using
Node Hdf5 Hdf5
1
(80 cores per node) 1166 1185
2
(80 cores per node) 681 656

4
(80 cores per node)

417

32

GPAW - Optimize . EEI"

EEEEEEEEEEEEEEEEEE

- O option flag

- Run on Niagara four nodes (80 cores per node).
- Speed : O3 > Ofast > 02
- The result of Ofast is correct, but the speed of O3 is fastest.

400

: Time
S5 O option flag (seconds)
é - Ofast 356
100

| 02 ‘ 365 ‘

Ofast 03

O option flag

NETWORK OF EXPERTISE S8

GPAW - Optimize . EEI"

EEEEEEEEEEEEEEEEEE

- O option flag

- Run on Niagara four nodes (80 cores per node).
- Speed : O3 > Ofast > 02
- The result of Ofast is correct, but the speed of O3 is fastest.

400

: Time
S5 O option flag (seconds)
é - Ofast 356
100

| 02 ‘ 365 ‘

Ofast 03

O option flag

NETWORK OF EXPERTISE S8

PC-A L

ADVISORY COUNCIL

NETWORK OF EXPERTISE

GPAW - Optimize

Vtune to find out the hotpot

- Using Intel vtune profiler to find out the hotspot.

Function Stack CPU Time: Total ¥ ¥ | CPU Time: Seif */| Module Function (Full) Source File Start Address Hotspots Hotspots by CPU Utilization v @ INTH. VTUNE PR‘
Total 100.0% I Analysis Configuration ~ CollectionLog Summary Bottom-up Caller/Callee Top-down Tree Platform topology-linux.c ~
_start 50.0% ms | mpiex... _start 0x4047¢0 | ~ CPUTme:Total .
Function a CPU Time: Self Module
_Ilbg_starl_maln 50 Ims |IbCI.SO.6 _Il_bc_start_... 0x22460 3 lmf”;cg‘gi,”"“ gz U:"Izz‘:” ; s SpinTime | Overhead Time
main 0.0 Ims | mpiex... | main mpiexec.c 0x4048b0 - _— T T == T :
- o - . __libc_stant_main 100.0% & I 0.0% 0.0% oms libc.s0.6 __libc_start_main
mpiexec_get_parameters 50.0% Oms mpiex... mpiexec_get... mpiexec ... 0x41f270 start ‘ 0) mpiexec.hydra start
i_set_default_ppn 30.0)ms | mpiex... | i_set default... i_mpiexec... 0x4201a6 main QR r—————] mpiexec.hydra main
i_read_default_env 20.0 Oms | mpiex... | i_read_defau... i_mpiexec... 0x422620 hwioc_look_linuxfs = mpiexec.hydra hwloc_look_linuxf
push_env_downstream 10.0 Jms | mpiex... push_env_d... 'mpiexec.c | 0x40ac40 mpiexec_get_parameters mpiexechydra mpiexec_get_par.
= — - == ipl_entrance [) (mpiexec.hydra ipl_entrance
_Start - SIS [SEUn _Start 0x406d70 ipl_processor_info] mpiexec.hydra ipl_processor_infc
ipl_detect_machine_topology —— mpiexechydra ipl_detect_machir
2 hwiloc_discover oe— mpiexec.hydra hwloc_discover
Top HOtSpotS hwioc_topology_load] 0) (mpiexec.hydra hwioc_topology_k
main E——) srun main
This section lists the most active functions in your application. Optimizing these hotspot _start — 0 stun _start
2 = o : . . - look_sysfscpu =]) mpiexec.hydra look_sysfscpu
functions typically results in improving overall application performance. T o s =
srun | —— 9 (srun srun
FUﬂCtion Module CPU Time i_set_default_ppn | — (mpiexec.hydra i_set_default_ppn
hwioc__alloc_read_path_as_cpumask =) mpiexec.hydra hwloc__alloc_rea
,:}p enat ||bC 50.6 0.040s hwloc_open =] mpiexec.hydra hwloc_open
. . X hwloc__read_path_as_cpumask =] mpiexec.hydra hwloc__read_pat!
QS _BARESYSCALL DoCallasmintel6alinyx _libc-dvpamic.so 002 0S_BARESYSCALL DoCallAsmintel64Lir = libc-dynamicso OS_BARESYSC/
2 K 0S_SyscaliDo = libc-dynamic.so OS_SyscallDo
fscanf libc.s0.6 0.010s i_read_default_env =) (mpiexec.hydra i_read_default_er
- —— nupu T ——— emRs] plug?n_load_from_me Uil 0% { libslurmfull.so plugfn_load_from_
— plugin_context_create = libslurmfull so plugin_context_cr
Snprin’[‘f chk libc.so.6 0.010s plugin_load_and_link = 0%)t libslurmfull.so plugin_load_and_
== = dlopen = 0%)9 (libdl.s0.2 dlopen
I LoadDwarfForFile [)) (libpin3dwarf.so LoadDwarfForFile
GetSubprogramsListinimage [s==] 0 { libpin3dwarf.so GetSubprograms!
*N/A Is applied to non-summable metrics. list_for_each_max = 0) (libslurmfull so list_for_each_ma

NETWORK OF EXPERTISE 34

GPAW - Optimize _ =R

NETWORK OF EXPERTISE

Scalable Python

- We reference the paper “Optimizing GPAW” try to use scalable python to optimize.
- We install a scalable version of python, but the version is based on python2 which
couldn’t support GPAW 20.10.0.

Available on-line at www.prace-ri.eu
PRACE

Partnership for Advanced Computing in Europe

Optimizing GPAW

Jussi Enkovaara®*, Martti Louhivuori?, Petar Jovanovic?, Vladimir Slavnic?, Mikael Rannar®
¢CSC - IT Center for Science, P.O. Box 405 FI-02101 Espoo Finland

PScientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
“Department of Computing Science, Umea University, SE-901 87 Umea, Sweden

NETWORK OF EXPERTISE 35

GPAW - Optimize ‘ EEI"
T S
-bind-to flag

- Running GPAW on four node using different -bind-to flag.

400

. Time
-bind-to flag (seconds)
s core 286
2 a0 none 283
node 284
100
numa 301

core none numa node socket

NETWORK OF EXPERTISE 36

GPAW - Optimize

HPC-A I

ADVISORY COUNCIL

NETWORK OF EXPERTISE

—
_

Openmp threads

- Using 320 cores to compare performance of different openmp threads number.

8000

6000

4000

seconds

2000
357

1 x 320

Openmp threads X MPI tasks

NETWORK OF EXPERTISE

283

2X160

4 X 80

MPI Time
Threads tasks (seconds)
1X 320 1 320 357
2 X160 2 160 283
4 X 80 4 80 7125

Si

GPAW - Optimize L FEERS0

ADVISORY COUNCIL
NETWORK OF EXPERTISE

R
Scalapack, Lapack, and Blas with MKL

- Using MKL to optimize the math libraries.
- MKL make GPAW

B Scalapack + Lapack + Blas [l Scalapack + Lapack + Blas (MKL)
300

Without Using
200 MKL MKL
§ Time
100 (seconds) 276 264

NETWORK OF EXPERTISE 38

GPAW - Optimize

HPC-A I

ADVISORY COUNCIL

NETWORK OF EXPERTISE

Using IPM profiler to profile the

- When we run the GPAW on optimizing stage, we compare the both of profiling results to
analysis.

Communication

Communication

% of MPI Time

% of MPI Time

M 1PI_Allreduce

M MPI_Wait

M PI_Bcast
MPI_Reduce

W PI_Isend
MPI_Allgather
MPI_Alltoallv

W MPI_Waitall
MPI_Irecv
MPI_Comn_create

M 1PI_Comn_group

W 1PI_Recy

B MPI_Comn_rank

B MPI_Comn_free

MW rP1_send
B MPI_Comm_compare
B vPI_Comm_size

NETWORK

Before

OF EXPERTISE

After

M 1PI_Allreduce

B vPI_vait

M MPI_Bcast
MPI_Reduce

M "PI_Alltoallv
MPI_Isend
MPI_Allgather

W MPI_Irecy
MPI_Waitall
MPI_Comm_create

M rPI_Conm_free

= MPI_Comm_group

B MPI_Recy

B MPI_Comm_rank

n MPI_Comn_compare
B #PI_Send
B MPI_Comn_size

59

GPAW - Optimize o e

NETWORK OF EXPERTISE

. -
Elpa & libvdwxc

- Using Elap and libvdwxc to speedup the performance of GPAW.

300

Without Using
Elpa + libvdwxc | Elpa + libvdwxc

200

seconds

Time

(seconds) 264 275

100

Without Elpa + libvdwxc Using Elpa + libvdwxc

NETWORK OF EXPERTISE 40

GPAW - Optimize o E:]EEI.[I

Eigensolver and parallel runs option

- We try to use different eigensolver to the copper.py.
- Fix some parallel runs options.

: Time
Eigensolver : -20,
(seconds) . FermiDirac(.2),
: kpts,
rmm-diis (default) 261 s Misane ;
: RWDIISC),
Cg upto 3600 . v maxitcer,
dav 441
calc = GPAW(**args)

atoms.set_calculator(calc)

41

GPAW - Result

HPC-A I

ADVISORY COUNCIL
NETWORK OF EXPERTISE

" Final Result - Niagara Cluster

- Software compilation version

- Hardware usage

intel 2019u4 Blacs mkl (intel 2019u4)
intelmpi 2019u4 libvdwxc 0.4.0
openblas 0.3.7 Elpa 2021.05.001
libxc 4.34 Hdf5 1.8.21
python 3.8.5 O option flag 03
Openmp 2019u4 -bind-to socket
fftw mkl (intel 2019u4) Openmp threads |2
Scalapack mkl (intel 2019u4)

Nodes 4
Lapack mkl (intel 2019u4)

Total cores 320
Blas mkl (intel 2019u4) Cores per node | 80

NETWORK OF EXPERTISE

seconds

Time: 00:04:24
= 264s

Speed up: 58%

500
400
300
200

100

origin optimize

nodes (80 cores per node)

42

