
Part 2 – High-Performance Computing – NEMO Climate
Simulation Application

Strategy

● NEMO
NEMO which stands for Nucleus for European Modelling of the Ocean, is a
state-of-the-art modelling framework for research activities and forecasting
services in ocean and climate sciences, developed in a sustainable way by a
European consortium. (https://www.nemo-ocean.eu/) NEMO is distributed
with several reference configurations, allowing both the user to set up a first
application and the developer to validate the Developments. (Figure 2.2)

● GYRE spec
The GYRE configuration has been built to simulate the seasonal cycle of a
double-gyre box model. The domain geometry is a closed rectangular basin
on the beta-plane centred at sin(30) and rotated by 45°, 3180 km long, 2120
km wide and 4 km deep. (Figure 2.3) The domain is bounded by vertical walls
and by a flat bottom. The configuration is meant to represent an idealized
North Atlantic or North Pacific basin. The circulation is forced by analytical
profiles of wind and buoyancy fluxes.

Figure 2.1 Figure 2.2

15

https://www.nemo-ocean.eu/

● Profile analysis
We did profile analysis to understand the performance of MEMO. As the
diagram shows, the function “_traadv_fct_MOD_tra_adv_fct” is the
hotspot of the NEMO model program. It consumes 32.8% computing
resources of the total computing sum. Through the profile diagram (Figure
2.3), we learned more about the NEMO computing resource consuming
distribution. The information also helps us to determine which part of the
code could be ported to GPU for acceleration. Although we can’t use GPUs in
this competition, we did find some references and documentations, and we
would very much like to try it in the future.

Figure 2.3

● Installation

We make a diagram (Figure 2.4) to show our installation process which
compares within our own local cluster and NSCC machine.

○ Our own local cluster
First, we follow the HPC-AI NEMO installation guideline and use the
hpc-x mpi to build the NEMO environment on our own machine. The
installation was completed smoothly throughout the guideline
process. After installation success, we try to run the NEMO model
using infiniband to speed up our program. Besides, we also try
different mpi versions and libraries on our machine.

○ NSCC machine
When we started installing on the NSCC machine, we encountered
some errors which we couldn’t solve. The first one is using hpcx mpi
which leads to the compiler can’t finding the c compiler. We try to
install our own new cmake and solve the error. After we solved it, at

16

the stage of running NEMO would have a segmentation fault. We make
our effort to solve the error and install repeatedly many times, the
error still exists. After trying the hpcx mpi version, we installed many
versions of mpi including openmpi, mpich, Openmpi from the NSCC
module file, finally we ran successfully using mpich. Mpich is the only
one successful version of mpi compared with OpenMPI and hpcx mpi.
For the NSCC machine, we choose mpich-3.1.4 version as our mpi
version.

Figure 2.4

17

Optimizing

● Multiple nodes
We use our script to get each hostname of node, and try to cross nodes from
one node started. We get errors when running NEMO using 17 nodes and
each node has 24 CPUs. The execute program always failed and couldn't be
run successfully. The question confused us for a long time, we were very
confused about why the program couldn’t be run successfully when using
more than 384 CPUs. After our team discussion, our conclusion is that the
spec of the test case “nn_Gyre” has limited the number of CPUs. For the
program parameter “nn_Gyre” 25 only allows 384 CPUs to run. If we want to
run more than 16 nodes with 384 CPUs in total, we should distribute 384
processes equally to each node. Therefore, 384 CPUs distribute to 16 nodes
and each node has 12 CPUs. After our experiment (Figure 2.5), using 32 nodes
12 CPUs per node could be run successfully and was the fastest one
compared with the other versions using 384 CPUs.

Figure 2.5

However, we received the mail from NSCC organizer, they told us that NEMO
can’t run with an arbitrary number of MPI ranks. After we know that, we
continuously test 32 nodes with more than 12 CPUs per node. The result
(Figure 2.6) shows that only four various numbers of CPUs per node could be
run.

18

CPUs per node Time (second) CPUs per node Time (second)

12 475 19 fail

14 460 20 fail

15 446 21 450

16 fail 22 fail

17 fail 23 fail

18 fail 24 fail

Figure 2.6

● -O option flag
Compiling the makenemo file using arch-linux_gfortran.fcm file has many
option flags and we discovered that %CFLAGS and %FCFLAGS there are two
flags that could be fixed and may have a chance to optimize the program. The
O2 O3 and Ofast compare with 16 nodes each node has 24 processes.(Figure
2.7) The testing result is that the Ofast flag is faster than the O2 flag and O3 is
the slowest of them. When we test 32 nodes (12 PCUs per node) using the
Ofast flag, the program would fail and can’t be run. After the test, we decided
to use default flag O2 to make sure that the answer and output files will be
correct and fine.

Figure 2.7

19

● HDF5 version
From the hpcx NEMO guideline,the hdf5 version used in the installation
tutorial is 1.10.6, but we are interested in whether different hdf5 versions
could improve the performance or not. Hence, we test two different hdf5
versions on 32 nodes and each node has 12 CPUs. After multiple tests (Figure
2.8), we choose each version which has the least running time to compare.
Finally, we decided to choose the hdf5 1.8.21 version, because the version is
stable and a little faster than hdf5-1.10.6.

Figure 2.8

● Process-core Binding
-bind-to <object[:num]> Specify the hardware element to bind each
process. We make an experiment : add -bind-to hwthread on different
numbers of nodes. Through the experiment, we discovered a special result as
shown below(Figure 2.9). The result shows that using 4 nodes(24 CPUs per
node) would have a significant optimizing effect. On the contrary, we used
more than 16 nodes, and we got two results from using 16 nodes(24 CPUs per
node) and 32 nodes (12 CPUs per node). Both of the results show that the
performance would be worse than no add -bind-to hwthread, so we decide
to remove this to optimize in our command.

20

Figure 2.9

Execution

After the above testing, we finally choose the best performance version to hand out.
We select the top two versions among all versions tested, and we test many times
and compare their average running time to choose one of them as our best version.
The best one is using 32 nodes(15 per CPUs).

Install NEMO from GitHub or Compressed File (Choose one), and submit with
the pbs file.

● Option1 : Install From GitHub

wget

https://raw.githubusercontent.com/William-Mou/module_file/main/instal

l_nemo.sh

chmod +x install_nemo.sh && ./install_nemo.sh

● Option2 : Install From Compressed File

tar zxvf install_nemo.tar.gz && \

cd install_nemo && \

chmod +x install_nemo_local.sh && \

./install_nemo_local.sh

● Evaluation GLUE benchmark

qsub $APPROOT/module_file/NTHU_NEMO.pbs

21

Result

● Software Compilation Version

gcc 7.5.0

boost 1.72.0

mpich 3.1.4

zlib 1.2.11

hdf5 1.8.21

pnetcdf 1.12.0

netcdf-c 4.7.3

netcdf-fortran 4.4.5

Option flag Default

● Hardware Usage

Nodes 32

CPU per node 15

Total CPUs 480

● Time

Time 00�07�26

Steps 4320

Steps/S 9.68

22

25

GPAW - Introduction

GPAW Introduction
• GPAW is a versatile software package for first-principles simulations of nanostructures

utilizing density-functional theory and time-dependent density-functional theory.

• The benchmark of GPAW in this competition is copper filament, periodic in z-direction
Real-space basis, k-points in z- dimension.

26

GPAW - Building and running

NSCC using pure MPI parallelization
• Multi-nodes has a good scalability on NSCC cluster.
• Using mpich to parallelize, the performance is bad.

gcc 5.1.0

mpich 3.3.0

libxc 4.3.4

Blas 3.8.0

python 3.8.3

Total
cores Nodes cores

Per node
Time

(second)

24 1 24 41130

48 2 24 7141

96 4 24 3085

27

GPAW - Building and running

Niagara using pure MPI parallelization
• Multi-nodes has a good scalability on Niagara cluster.
• Using Intelmpi to parallelize, the performance is good.

Total
cores Nodes cores

Per node
Time

(second)

80 1 80 1166

160 2 80 681

320 4 80 417

icc 2019u4

Intelmpi 2019u4

libxc 4.3.4

openblas 0.3.7

python 3.8.5

28

GPAW - Building and running

NSCC vs. Niagara using pure MPI parallelization
• Multi-nodes has a good scalability on both of Niagara cluster and NSCC cluster.
• Niagara cluster has more cores than NSCC cluster, but we can discover that performance

of Intelmpi is better than mpich.

NSCC Niagara

C compiler 5.1.0 Intel 2019u4

mpi mpich -3.3 Intelmpi 2019u4

libxc 4.3.4 4.3.4

Blas 3.8.0 No use

Openblas No use 0.3.7

python 3.8.3 3.8.5

29

GPAW - Visualization

GPAW visualization
• Using jmol simulator to simulate the file elf_ribbon.cube file.
• One is image and the other is animation.

30

GPAW - Optimize

Choose which cluster to optimize.
• When using four nodes and each node using all of cores per node to compare.
• The performance of Niagara cluster is much better than NSCC cluster.
• We choose Niagara cluster to optimize.

NSCC Niagara

Nodes 4 4

cores per
node 24 80

Total cores 96 320

Time
(seconds) 3085 417

31

GPAW - Optimize

FFTW
• There is only a little speedup when using FFTW to optimize.

cNode Without FFTW
(seconds)

Using FFTW
(seconds)

1
(80 cores per node) 1166 1170

2
(80 cores per node) 681 671

4
(80 cores per node) 417 412

32

GPAW - Optimize

Hdf5
• There is only a little speedup when using Hdf5 to optimize.

Node Without
Hdf5

Using
Hdf5

1
(80 cores per node) 1166 1185

2
(80 cores per node) 681 656

4
(80 cores per node) 417 415

33

GPAW - Optimize

- O option flag
• Run on Niagara four nodes (80 cores per node).
• Speed : O3 > Ofast > O2
• The result of Ofast is correct, but the speed of O3 is fastest.

O option flag Time
(seconds)

Ofast 356

O3 352

O2 365

33

GPAW - Optimize

- O option flag
• Run on Niagara four nodes (80 cores per node).
• Speed : O3 > Ofast > O2
• The result of Ofast is correct, but the speed of O3 is fastest.

O option flag Time
(seconds)

Ofast 356

O3 352

O2 365

34

GPAW - Optimize

Vtune to find out the hotpot
• Using Intel vtune profiler to find out the hotspot.

35

GPAW - Optimize

Scalable Python
• We reference the paper “Optimizing GPAW” try to use scalable python to optimize.
• We install a scalable version of python, but the version is based on python2 which

couldn’t support GPAW 20.10.0.

36

GPAW - Optimize

-bind-to flag
• Running GPAW on four node using different -bind-to flag.

-bind-to flag Time
(seconds)

core 286

none 283

node 284

numa 301

socket 273

37

GPAW - Optimize

Openmp threads
• Using 320 cores to compare performance of different openmp threads number.

Threads MPI
tasks

Time
(seconds)

1 X 320 1 320 357

2 X 160 2 160 283

4 X 80 4 80 7125

38

GPAW - Optimize

Scalapack, Lapack, and Blas with MKL
• Using MKL to optimize the math libraries.
• MKL make GPAW

Without
MKL

Using
MKL

Time
(seconds) 276 264

39

GPAW - Optimize

Using IPM profiler to profile the
• When we run the GPAW on optimizing stage, we compare the both of profiling results to

analysis.

Before After

40

GPAW - Optimize

Elpa & libvdwxc
• Using Elap and libvdwxc to speedup the performance of GPAW.

Without
Elpa + libvdwxc

Using
Elpa + libvdwxc

Time
(seconds) 264 275

41

GPAW - Optimize

Eigensolver and parallel runs option
• We try to use different eigensolver to the copper.py.
• Fix some parallel runs options.

Eigensolver Time
(seconds)

rmm-diis (default) 261

cg upto 3600

dav 441

42

GPAW - Result

Final Result - Niagara Cluster
• Software compilation version
• Hardware usage

 intel 2019u4

intelmpi 2019u4

openblas 0.3.7

libxc 4.3.4

python 3.8.5

Openmp 2019u4

fftw mkl (intel 2019u4)

Scalapack mkl (intel 2019u4)

Lapack mkl (intel 2019u4)

Blas mkl (intel 2019u4)

Blacs mkl (intel 2019u4)

libvdwxc 0.4.0

Elpa 2021.05.001

Hdf5 1.8.21

O option flag O3

-bind-to socket

Openmp threads 2

Speed up: 58%

Nodes 4

Total cores 320

Cores per node 80

Time: 00:04:24
= 264s

